\qquad
Precalculus January 29, 2019

Purpose: In this problem set, you will explore computing function values of compositions of functions algebraically, numerically, and graphically.

1. Consider the graphs of the functions $f(x)$ and $g(x)$ below.

Find the corresponding function values:
(a) $(f+g)(-3)$
(b) $(f-g)(5)$
(c) $(f \circ g)(4)$
(d) $(g \circ g)(-3)$
2. Let $f(x)=\frac{x-1}{x+1}$ and $g(x)=x^{2}+2$. Find formulas for the following compositions. Simplify your results as much as possible.
(a) $f \circ g$
(b) $g \circ f$
3. Given $f(x)=x^{2}$ and $g(x)$ given in the table below, find the corresponding function values below. If a function value does not exist, justify why not.

x	$g(x)$
1	2
2	5
3	7
4	9
5	11

(a) $(f \circ g)(1)$
(b) $(g \circ f)(5)$
(c) $(f \circ g \circ f)(2)$
4. Is $f \circ g$ always, sometimes, or never the same function as $g \circ f$? Give some examples to justify your claim.
5. Recall the functions from question 2: $f(x)=\frac{x-1}{x+1}$ and $g(x)=x^{2}+2$. Is $x=-1$ in the domain of $g \circ f$? Why or why not?
6. Suppose you have a friend who is hopelessly lost in Calculus I. As it turns out, they don't understand function composition at all! Luckily, you're pretty much an expert. Give a short explanation, draw a picture, and provide an example to help them out.

